Impacto de nociones de disponibilidad en la evaluación económica de proyectos de generación óptimos

Autores

  • Victor Martín Universidad Tecnológica Nacional (UTN-FRRo)
  • Ezequiel Godoy Universidad Tecnológica Nacional (UTN-FRRo).
  • Sonia Benz Universidad Tecnológica Nacional.

Palavras-chave:

Ciclo combinado, Optimización, Disponibilidad, Mantenimiento

Resumo

El presente trabajo tiene por objetivo estudiar el impacto de considerar distintas nociones de disponibilidad durante la formulación del proyecto de inversión de una planta de generación por ciclo combinado. En primer lugar, se propone una estrategia para determinar el horizonte operativo equivalente del sistema, que incluye el cómputo de las erogaciones en que se incurren debido a la operación en todo el conjunto de estados degradados que la planta atraviesa a lo largo de su vida útil. En segundo lugar, se propone incluir una funcionalidad entre disponibilidad y recursos asignados para mantenimiento, con objeto de asegurar que se podrá alcanzar la meta de generación fijada frente a las cambiantes condiciones que la planta debe afrontar. Luego, se analizan las mejoras obtenidas en los indicadores económicos óptimos del proyecto, observándose un incremento del atractivo de las opciones de inversión generadas desde las etapas tempranas de diseño de la planta.10.13084/2175-8018.v05n10a08

Biografia do Autor

Victor Martín, Universidad Tecnológica Nacional (UTN-FRRo)

Becario, Universidad Tecnológica Nacional (UTN-FRRo), Centro de Aplicaciones Informáticas y Modelado en Ingeniería (CAIMI), Argentina.

Ezequiel Godoy, Universidad Tecnológica Nacional (UTN-FRRo).

Investigador, Ingeniero, Universidad Tecnológica Nacional (UTN-FRRo), Centro de Aplicaciones Informáticas y Modelado en Ingeniería (CAIMI), Argentina.

Sonia Benz, Universidad Tecnológica Nacional.

Investigador, Doctora, Universidad Tecnológica Nacional (UTN-FRRo), Centro de Aplicaciones Informáticas y Modelado en Ingeniería (CAIMI), Argentina.

Referências

AGUILAR, O.; KIM, J.K.; PERRY, S. SMITH, R. Availability and reliability considerations in the design and optimization of flexible utility systems. Chemical Engineering Science, v. 63, n. 14, p. 3569-3584, 2008.

ALBER, T.G.; HUNT, R.C.; FOGARTY, S.P.; WILSON, J.R. Idaho chemical processing plant failure rate database. SciTech Connect, 1995.

BERNIER, E.; MARÉCHAL, F.; SAMSON, R.: Multi-objective design optimization of a natural gas-combined cycle with carbon dioxide capture in a life cycle perspective. Energy, v. 35, n. 2, p. 1121-1128, 2010a

BERNIER, E.; MARÉCHAL, F.; SAMSON, R. Optimal greenhouse gas emissions in NGCC plants integrating life cycle assessment. Energy, v. 37, n. 1, p. 639-648, 2010b.

CAMMESA. 2013. Disponible en: <http://www.cammesa.com.ar>.

EL-NASHAR, A.M. Optimal design of a cogeneration plant for power and desalination taking equipment reliability into consideration. Desalination, v. 229, n. 1-3, p. 21-32, 2008.

ERGUINA, V. Safety assured financial evaluation of maintenance. PhD Thesis for Doctor of Philosophy, Texas A&M University, 2004.

GODOY, E.; SCENNA, N.J.; BENZ, S.J. Families of optimal thermodynamic solutions for combined cycle gas turbine (CCGT) power plants. Applied Thermal Engineering, v. 30, n. 6-7, p. 569-576, 2010.

GODOY, E; BENZ, S.J.; SCENNA, N.J. A strategy for the economic optimization of combined cycle gas turbine power plants by taking advantage of useful thermodynamic relationships. Applied Thermal Engineering, v. 31, n. 5, p. 852-871, 2011.

GOEL, H.; GRIEVINK, J.; HERDER, P.M.; WEIJNEN, M.P.C. Integrating reliability optimization into chemical process synthesis. Reliability Engineering and System Safety, v. 78, n. 3, p. 247-258, 2002.

HAGHIFAM, M.R.; MANBACHI, M. Reliability and availability modelling of combined heat and power (CHP) systems. International Journal of Electrical Power & Energy Systems, v. 33, n. 3, p. 385-393, 2011.

ISHII, N.; FUCHINO, T.; MURAKI, M. Life cycle oriented process synthesis at conceptual planning phase. Computers & Chemical Engineering, v. 21, p. S953-S958, 1997.

KOTOWICZ, J.; BARTELA, L. The influence of economic parameters on the optimal values of the design variables of a combined cycle plant. Energy, v. 35, n. 2, p. 911-919, 2010.

MORENO, M.S.; MONTAGNA, J.M.; IRIBARREN, O.A. Multiperiod optimization for the design and planning of multiproduct batch plants. Comp. Chem. Eng. v. 31, n. 9, p. 1159-1173, 2007.

NERC. 2007-2011. Generating availability report. 2012. Disponible en: <http://www.nerc.com/pa/RAPA/gads/Reports/Forms/DispForm.aspx?ID=59>.

NYE THERMODYNAMICS CORPORATION. 2013. Disponible en: <http://www.gas-turbines.com>.

OLIVEIRA FRANCISCO, A.P.; MATOS, H.A. Multiperiod synthesis and operational planning of utility systems with environmental concerns. Computers & Chemical Engineering, v. 28, n. 5, 745-753, 2004.

OREDA PARTICIPANTS. Offshore reliability data handbook. 4th edition. 2002.

PAK, P.S.; LEE, Y.D.; AHN, K.Y. Characteristics and economic evaluation of a power plant applying oxy-fuel combustion to increase power output and decrease CO2 emission. Energy, v. 35, n. 8, p. 3230-3238, 2010.

POMA, C.; VERDA, V.; CONSONNI, S. Design and performance evaluation of a waste-to-energy plant integrated with a combined cycle. Energy v. 35, n. 2, p. 786-793, 2010.

ROONEY, W.C.; BIEGLER, L.T. Multiperiod reactor network synthesis. Computers & Chemical Engineering, v. 24, n. 9-10, p. 2055-2068, 2000.

THE ROYAL ACADEMY OF ENGINEERING. The costs of generating electricity. 2004.

U.S. ENERGY INFORMATION ADMINISTRATION. Updated capital cost estimates for electricity generation plants (2010). Disponible en: <http://www.eia.gov>

U.S. ENERGY INFORMATION ADMINISTRATION. 2013. Disponible em: <http://www.eia.gov>.

Publicado

2014-08-19

Edição

Seção

Artigos