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ABSTRACT: A practical common weight Maximin approach with an improved 

discriminating power for technology selection is introduced. The proposed Maximin approach 

enables the evaluation of the relative efficiency of decision-making units (DMUs) with 

respect to multiple outputs and a single exact input with common weights. Its robustness and 

discriminating power are illustrated via a previously reported robot evaluation problem by 

comparing the ranking obtained by the proposed Maximin approach framework with that 

obtained by the DEA classic model (CCR model) and Minimax method. Because the number 

of efficient DMUs is reduced so discriminating power of our approach is higher than previous 

approaches and because Spearman’s rank correlation between the ranks obtained from our 

approach and Minimax approach is high therefore robustness of new approach is justified. 
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1 INTRODUCTION 

Rapid advances in computers and engineering science have resulted in a high range of 

available advanced manufacturing technologies (AMTs) among which industrial robots, 

computer numerical control (CNC) machines, flexible manufacturing systems, automated 

material handling (AMH) systems can be listed. Despite the acquisition and the 

implementation of AMTs being very costly, manufacturers that compete in global markets 

seek to incorporate them into their manufacturing process due to their wide range of merits 

including increased flexibility, improved product quality, labor saving, fast production and 

delivery, etc. However, the large number of available AMTs and numerous AMT 

performance attributes that should be considered in the decision process, make the evaluation 

and selection of AMTs a very complex decision-making process, which requires the use of a 
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robust decision methodology capable of evaluating several AMT candidates based on a 

number of attributes. 

Many justification methodologies for AMT selection necessitate the decision-maker to 

assign arbitrary importance weights to performance attributes. One problem with arbitrary 

weights is that they add subjectivity to the methodology. On the other hand, assigning weights 

is cumbersome since it is often quite difficult for the decision-maker to quantify their 

preferences on performance attributes. Furthermore, the task of assigning weights becomes 

more difficult as the number of performance attributes increases. Hence, a robust decision tool 

that does not require precise information on the importance of performance attributes from the 

decision-maker would facilitate the AMT evaluation process. The present paper proposes a 

multi-objective decision tool for industrial robot selection, which does not require subjective 

assessments of the decision-maker to prioritize performance attributes. 

For quality, productivity and safety reasons, the use of robots in industry has gained 

popularity in the past two decades. Robots can be programmed to keep a constant sped and a 

predetermined quality when performing a task repetitively. They can manage to work under 

conditions hazardous to human health such as excessive heat or noise, heavy load, toxic gases, 

etc. Therefore, manufacturers prefer to use robots in many industrial applications where 

repetitive, difficult or hazardous tasks need to be performed, such as assembly, machine 

loading, materials handling, spray painting and welding. However, the large number of 

existing robot options as well as the large number of attributes specifying robot performance 

for which industry-wide standards have not yet been determined result in a major impediment 

for potential robot users when deciding which robot to buy. 

Many studies report that most widely considered performance attributes for industrial 

robots are load capacity, velocity, repeatability and accuracy. Repeatability and accuracy are 

the most easily confused attributes. Repeatability is a measure of the ability of the robot to 

return to the target point (the point where the robot is expected to go) and defined as the 

radius of the circle sufficiently large to include all points to which the robot actually goes on 

repeated trials. On the other hand, accuracy is a measure of closeness between the robot end 

effectors and the target point, and is defined as the distance between the target point and the 

center of al points to which the robot goes on repeated trials. Manufacturers are more 

concerned with repeatability than accuracy since poor repeatability is more difficult to correct. 
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A robot with the capability of affording heavy load at high speed and low repeatability 

and accuracy will contribute positively to the productivity and flexibility of the manufacturing 

process, which are of vital importance where rapid changes in customer needs require the 

introduction of new products into the market very frequently. When product design changes 

need to be made repeatedly, owning a high-performing robot will avoid replacement or 

modification. Several works that address the development of a robust decision tool enabling 

the potential robot user to select a high performing robot have been reported so far. A brief 

survey on these previous works is given in section 2. This paper contributes to the AMT 

selection literature by introducing a novel multi-objective decision methodology that can 

integrate multiple outputs such as various technical characteristics with a single input such as 

cost. The proposed methodology can be successfully applied, but is not limited to technology 

selection problems such as the determination of the best industrial robot, CNC machine or 

flexible manufacturing system from a feasible set of mutually exclusive alternatives. 

The paper is organized as follows. Section 2 provides a concise literature review on the 

existing decision tools for AMT evaluation. In section 3, a practical common weight MCDM 

methodology (KARSAK; AHISKA, 2005) is presented. Section 4 presents the proposed 

Maximin methodology. The robustness and convenience of the proposed Maximin 

methodology are illustrated through a comparison with the method of Karsak and Ahiska 

(2005) for a technology selection problem in sections 5, 6. Finally, concluding remarks are 

provided in section 7. 

 

2 LITERATURE REVIEW 

Over the past several decades, manufacturers who have been faced with intense 

competition in the global marketplace, have invested in AMTs, such as group technology, 

flexible manufacturing systems, industrial robots, etc., which enable high quality and 

customization in a cost-effective manner. The increased concern and importance attached to 

AMTs by the manufacturers have consequently oriented the researchers to develop models 

and methodologies for evaluation and selection of AMTs. Proctor and Canada (1992), Son 

(1992) and, more recently, Raafat (2002) have provided comprehensive bibliographies on 

justification of AMTs. 

Mkrkdtth and Suresh (1986) have classified the justification methods for AMT 

evaluation into three groups: economic analysis techniques, analytical methods and strategic 
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approaches. Miltenburg and Krinsky (1987) analyzed the application of traditional economic 

justification techniques such as net present worth, annual worth, internal rate of return, 

payback period to the evaluation of FMS alternatives. Statistical procedures, mathematical 

programming, multi-attribute and multi-objective decision-making methods can be listed 

among analytical methods. Analytical methods may be either deterministic or non-

deterministic. 

Deterministic analytical methods include scoring models, the analytic hierarchy process 

(AHP), outranking methods, goal programming, data envelopment analysis (DEA), etc., 

whereas stochastic methods, game theoretical methods, fuzzy MCDM methods and expert 

systems are examples for non-deterministic analytical methods. Strategic approaches consider 

only corporate objectives that are in general long-term intangible benefits. Therefore, their 

integrated use with economic or analytical methods would be more appropriate. 

A number of papers have focused on the use of MCDM techniques for AMT 

justification. Huang and Ghandforoush (1984) evaluated industrial robot vendors, and 

identified the best robot by assigning specific weights to those factors. Imany and Schlesinger 

(1989) compared linear goal programming and ordinary least-squares methods via a robot 

selection problem where robots are evaluated based on cost and technical performance 

measures including load capacity, velocity and repeatability. 

Stam and Kuula (1991) developed a two-phase decision procedure that uses AHP and 

multi-objective mathematical programming for the problem of flexible manufacturing system 

(FMS) selection. Agrawal, Kohli and GUPTA, (1991) employed TOPSIS for robot selection 

whereas Agrawal, Verma and Agarwal, (1992) applied TOPSIS for optimum gripper 

selection. Shang and Sueyoshi (1995) evaluated FMS alternatives using a decision framework 

that can integrate tangible and intangible benefits and financial factors. The proposed 

framework involved first the integrated use of AHP, simulation and an accounting procedure 

to determine the necessary outputs and inputs of FMS alternatives, and then, the application 

of DEA with restricted weights and cross-efficiency analysis to select the most efficient FMS. 

Khouja (1995) addressed the robot evaluation problem and proposed a two-phase 

methodology that consisted of first using DEA to identify the technically efficient robots from 

a list of feasible robots, and then, using multi-attribute utility theory to further discriminate 

among efficient robots and select the best alternative. Baker and Talluri (1997) addressed 

some limitations of the simple radial efficiency scores used in Khouja (1995) and suggested 
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the use of cross-efficiency analysis for AMT selection. Sambasivarao and Deshmukh (1997) 

presented a decision support system that employed economic analysis, multi-attribute analysis 

including AHP, TOPSIS and linear additive utility model, and risk analysis. 

Parkan and Wu (1999) studied the robot selection problem using OCRA, TOPSIS and 

utility function model, and proposed to rank the robots based on the averages of the rankings 

obtained by these there decision tools. Sarkis and Talluri (1999) evaluated FMS alternatives 

based on pair-wise efficiency comparisons made through a decision model that integrated the 

DEA model suggested by Cook, Kres and Seiford (1996) with cross-efficiency analysis. 

Parkan and Wu (2000) applied OCRA, AHP and DEA separately to an advanced automatic 

process evaluation problem and compared the results obtained by OCRA with those obtained 

by the other two methods to find out their similarities and differences. 

Braglia and Gabbrieli (2000) proposed the use of a known mathematical method based 

on dimensional analysis theory for selection of the best robot when conflicting performance 

attributes are to be considered. 

In addition, several studies contribute to the non-deterministic MCDM literature on 

evaluation, justification and selection of AMTs. Chang and Tsou (1993) formulated a chance-

constraints linear programming model for economic evaluation of FMSs. Liang and Wang 

(1993) proposed a robot selection procedure using the concepts of fuzzy set theory. Perego 

and Rangone (1998) analyzed and compared fuzzy set theory-based multi-attribute decision-

making techniques for AMT justification. Karsak (1998) proposed a two-phase robot 

selection procedure that integrated DEA with a fuzzy robot selection algorithm, which 

enabled the decision-maker to fully rank robot alternatives. 

Khouja and Kumar (1999) proposed a methodology for robot selection, which 

integrated technical considerations with real options theory. Karsak and Tolga (2001) 

presented a fuzzy multi-criteria decision-making approach for evaluating AMT investments, 

which integrated both economic and strategic selection criteria using a decision algorithm 

based on a fuzzy number ranking method. Despite many fuzzy MCDM methods involve the 

use of a fuzzy number ranking method to handle imprecision and vagueness existing in 

decision problems, fuzzy number ranking methods is criticized for not producing consistent 

outcomes. Furthermore, there is no consensus on the best fuzzy number ranking method. 

Karsak (2002) has recently developed a distance-based fuzzy MCDM approach for evaluating 

FMS alternatives that eliminates the need for using a fuzzy number ranking method. 
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Recently, AMT justification problems that involve the consideration of a single input 

and multiple outputs have been addressed by several authors. Braglia and Petroni (1999) 

presented a robot evaluation problem that considered cost as the single input and engineering 

attributes as the outputs, and they proposed the use of DEA with restricted multiplier weights 

for identification of the optimal robot. They have also discussed the merits and drawbacks of 

using weight restriction constraints compared with those of cross-efficiency analysis. Talluri 

and Yoon (2000) proposed a cone-ratio DEA approach for AMT justification, which made 

use of weight restriction constraints to incorporate a priori information on the priorities of 

factors, and illustrated the proposed model via a robot selection problem. A similar decision 

problem has recently been addressed by Sun (2002). 

Akin to studies by Braglia and Petroni (1999) and Talluri and Yoon (2000), Sun (2002) 

selected cost as the single input criterion and technical specifications as output criteria to 

evaluate relative efficiency of CNC lathes. 

The present paper proposes a robust practical common weight MOLP methodology for 

evaluating AMTs based on a single input and multiple outputs. The proposed methodology 

possesses two advantages compared with DEA-based approaches proposed in the literature 

for the similar problem. First, the proposed approach evaluates al alternatives by common 

weights for performance attributes overcoming the unrealistic weighting scheme common to 

DEA resulting from the fact that each DMU selects its own factor weights to lie on the 

efficient frontier. Second, it identifies the best AMT by requiring fewer computations 

compared with DEA-based approaches. One other similarity between the proposed 

methodology and DEA-based approaches is that they do not demand a priori importance 

weights from the decision-maker for performance attributes under consideration, and thus, 

they can be named as objective decision techniques. 

 

3 PROPOSED MCDM MODEL BY KARSAK AND AHISKA 

Data envelopment analysis is a mathematical programming-based decision-making 

technique, which has been widely used to treat decision problems that necessitate the 

consideration of multiple outputs and multiple inputs to evaluate the relative efficiency of 

DMUs. While considering multiple inputs in efficiency analysis, DEA makes an implicit 

assumption that any input can act as a substitute for any other because it uses weighted 

combination of all the inputs (TOFALIS, 1997). This critical assumption does not hold for 
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cases where the inputs are not substitutes for each other. Tofalis (1997) states that considering 

one input at a time eliminates the problem of extreme or unrealistic weights on the inputs 

since they are not weighted at all. 

When multiple exact outputs and a single input are to be considered in the evaluation 

process, the conventional DEA formulation takes the following form (Equation 1): 
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Where 0E  is the efficiency of the evaluated DMU, r  is the weight assigned to output 

r, w is the weight assigned to the single input, rj  is the amount of output r produced by 

DMUj, jX  is the amount of the single input consumed by DMUj, and   is a small positive 

scalar. 

Formulation (1) is non-linear; however, it is possible to convert it into a linear program 

through a straightforward variable alternation. Replacing the term r

w


 with ru , for r , yields 

the following linear (Equation 2): 
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Formulation (2), being a special case of the DEA model, possesses the characteristics of 

DEA and thus it suffers from all of its limitations. First, in order to determine the relative 

efficiencies of al DMUs, formulation (2) has to be formulated and solved n times, where n is 

the number of DMUs to be evaluated. Therefore, DMUs are not evaluated by common 
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performance attribute weights, which may not lead to desirable consequences, since company 

management will typically wish to evaluate all units on a common weights basis. Second, 

DEA assumes that DMUs that receive the efficiency scoreof1 are called ‘efficient’ and they 

are said to lie on the efficient frontier while the DMUs that receive a score less than 1 are 

called ‘inefficient’. In short, DMUs are classified in a dichotomous way as efficient ones and 

inefficient ones. Further, as al efficient DMUs receive the same efficiency score of 1, 

formulation (2) does not enable further discrimination among them. 

Possessing poor discriminating power, the DEA model represented by formulation (2) is 

not an appropriate decision tool for the cases where the decision-maker has to determine the 

best DMU. Moreover, for each DMU, formulation (2) provides the flexibility to choose the 

weights in its own favor, i.e. in a way to maximize its own efficiency score. Allowing such 

weight flexibility may result in identifying a DMU to be efficient by giving an extremely high 

weight to criteria with respect to which it has shown an extremely good performance and an 

extremely small weight to those with respect to which it has shown a bad performance. Such 

an extreme weighting is unrealistic and causes the DEA model to have a poor discriminating 

power. To avoid unrealistic weight distribution and overcome the poor discriminating power 

of DEA, several approaches to restrict weights, which in general impose bounds or other 

constraints on weights, have been proposed (also DYSON; THANASOULIS 1988, ALEN et 

al. 1997). The just cited approaches modify the existing technical efficiency oriented DEA 

models by including into the model weight restrictions that are formulated based on value 

judgment, which reduce the degree of objectiveness of DEA. 

Karsak and Ahiska introduced an approach that differs from those approaches in that it 

does not necessitate a priori subjective assessments of the decision-maker on factor weights 

for further prioritization of DMUs. The proposed approach employs efficiency measures that 

are not specific to a particular DMU, but common to all DMUs. Using the proposed efficiency 

measures, formulation (2) is transformed into a common weight MCDM model with an 

improved discriminating power.  

Proposed efficiency measures are a function of the deviation from efficiency. Let jd  be 

defined as the deviation of the efficiency of DMUj, jE , from the ideal efficiency of 1 (i.e. 

1j jd E  ). As minimizing 0d , the deviation from efficiency for 0DMU , is  equivalent to 
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maximizing its efficiency, 0E , an equivalent of formulation (2) can be written as follows 

(Equation 3): 

nj

sr

nj

tosubject

d

u

d
x

yu

d

j

r

j

j

s

r
rjr

,...,2,1,0

,...,2,1,

,...,2,1,1

min

1

0











                                          (3) 

The objective functions of Equations (2) and (3) are specific to a particular DMU. 

Therefore, to determine the efficiencies of al n DMUs, we need to formulate n models, each 

aiming to minimize the deviation from efficiency for a particular DMU. Furthermore, these 

models considering the technical efficiency measure give the evaluated DMU the maximum 

possible freedom in choosing the performance attribute weights, which reduces the 

discriminating power of the model. 

Minimax efficiency measure can be briefly defined as the minimization of the 

maximum deviation from efficiency among all DMUs. Further discrimination among DMUs 

can be allowed by replacing the objective function of formulation (3) with the Minimax 

efficiency measure, which yields the following MCDM model, namely the Minimax 

efficiency model. 
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Where M is the maximum deviation from efficiency and jM d  are the constraints that 

are added to the model to assure that, max j jM d . 

Minimax efficiency measure has a higher discriminating power than the classical 

efficiency measure, since it considers the favor of al DMUs simultaneously, which restricts 

the freedom of a particular DMU to choose the factor weights in its own favor. Furthermore, 
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as the Minimax efficiency measure is an objective function not specific to a particular DMU 

but common to all DMUs, it does not necessitate solving n formulations to determine 

efficiencies of al DMUs. The efficiencies for al DMUs can be computed by a single 

formulation. When formulation (4) is solved, the efficiencies for al DMUs is determined by 

calculating1 jd , for j = 1, 2,..., n. This one-step efficiency computation enables the 

evaluation of the relative efficiency of all DMUs based on common performance attribute 

weights, which contrasts with DEA models where each DMU is evaluated by different 

weights. 

 

4 MAXIMIN APPROACH 

Consider the following multi-objective problem (Equation 5). 

 
1 2

max ( ), ( ),..., ( )

, ( ) 0, 1,2,...,

k

n

i

x x x

subject to

X X x i m

f f f

gx x R
 

  
  

      
    

                          (5) 

Where X is the region of solutions. For solving this MODM, we can use Maximin 

approach that assumes the optimal solution of the following problem is efficient for the above 

MODM problem (Equation 6). 
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By defining variable z, we have: 
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In model (7) f
j

*

 are used for normalizing objective functions. 
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5 PRACTICAL COMMON WEIGHT MAXIMIN APPROACH FOR 

TECHNOLOGY SELECTION 

 

Consider the following MOLP (Equation 8). 
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We can solve the above formulation by using (Equation 7). That is (Equation 9: 
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Because all of 
x

yu

j

s

r
rjr

1  are of efficiency type, then there is no need to normalization. 

By solving formulation (9),ur

*
 are calculated that are a CSW and we can calculate 

efficiency of all DMUs. 

Theorem: If DMU j
 is efficient at Equation (9) then necessarily would be efficient by 

model CCR.  

For complete ranking of DMUs, we have A as follow (Equation 10): 

 

 (9)jA j DMU is efficient by Equation  

Now, we have 
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6 EXAMPLE PROBLEM 

In this section, the proposed Maximin methodology that may be applied to a wide range 

of technology selection problems is used for robot selection, and its discriminating power is 

illustrated through a previously reported industrial robot selection problem (Karsak; Ahiska, 

2005).  

The robustness of the methodology proposed in this paper is tested via comparing the 

ranking obtained by the proposed methodology with that obtained by Karsak and Ahiska. The 

robot selection problem addressed in Karsak and Ahiska (2005) involves the evaluation of 

relative efficiency of 12 robots with respect to four engineering attributes including ‘handling 

coefficient’, ‘load capacity’, ‘repeatability’ and ‘velocity’, which are considered as outputs, 

and ‘cost’, which is considered as the single input. Since lower values of repeatability indicate 

better performance, the reciprocal values of repeatability are used in efficiency computation 

of robots. Input and output data regarding the robots are given in Table 1. 

Formulations (3) and (4) for 00001.0 are used to calculate DEA efficiency scores 

and Minimax efficiency scores and the new algorithm (Maximin approach) of robots, which 

are given in the second, third and fourth columns of Table 2, respectively.  

Table 1 – Input and output data for 12 industrial robots 

Robot (j) Cost(US$) Handling Coefficient Load Capacity(kg) 1/Repeatability (mm-1) Velocity (m/s) 

1 100000 0.995 85 1.70 3.00 

2 75000 0.933 45 2.50 3.60 

3 56250 0.875 18 5.00 2.20 

4 28125 0.409 16 1.70 1.50 

5 46875 0.818 20 5.00 1.10 

6 78125 0.664 60 2.50 1.35 

7 87500 0.880 90 2.00 1.40 

8 56250 0.633 10 8.00 2.50 

9 56250 0.653 25 4.00 2.50 

10 87500 0.747 100 2.00 2.50 

11 68750 0.880 100 4.00 1.50 

12 43750 0.633 70 5.00 3.00 
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To test the robustness of the proposed Maximin methodology, the scores obtained are 

compared with Minimax efficiency scores in third column of Table 2. To conclude whether 

there is a positive relationship between the sets of rankings of the two approaches (Minimax 

and Maximin efficiency scores), Spearman’s rank correlation test is conducted. 

Table 2 – Efficiencies of robots for 00001.0  

Robot(j) DEA efficiency scores Minimax efficiency scores Maximin efficiency scores 

1 0.653(11) 0.653(9) 0.653(9) 

2 0.821(7) 0.753(6) 0.754(6) 

3 0.954(4) 0.883(4) 0.884(4) 

4 0.950(5) 0.862(5) 0.863(5) 

5 1.000(1) 1.000(1) 1.000(1) 

6 0.563(12) 0.563(12) 0.564(12) 

7 0.683(10) 0.683(8) 0.683(8) 

8 1.000(1) 0.631(10) 0.632(10) 

9 0.765(8) 0.687(7) 0.688(7) 

10 0.714(9) 0.617(11) 0.617(11) 

11 0.909(6) 0.890(3) 0.889(3) 

12 1.000(1) 1.000(1) 0.999(2) 

Average 834.0  768.0   0.768 

1 2 3 40.537476 ,  0.135941 ,  0.000010 ,  0.000010u u u u     

 

We can also use correlation to obtain Spearman’s ρ (rank correlation coefficient). Like 

the Pearson product moment correlation coefficient, Spearman’s ρ is a measure of the 

relationship between two variables. However, Spearman’s ρ is calculated on ranked data. 

For calculating spearman’s   we can use the below formulation that d i  is the 

difference between ranks for the same observation (DMU). And n is the number of DMUs 

(Equation 11). 
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1                                                                                         (11)
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Moreover, we can compute the Pearson’s correlation on the columns of ranked data. 

The result of this formulation is too close to the exact Spearman’s  . In this formulation 

yx ii , are the ranks for the same DMUi. And i=1, 2, 3,…, n (Equation 12). 
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Spearman’s rank correlation is 0.98 and means that there is a positive relationship 

between the sets of rankings of the two approaches (Minimax and Maximin efficiency 

scores). Because the number of efficient DMUs on a common weight basis is reduced so 

discriminating power of our approach is higher than previous approaches and because 

Spearman’s rank correlation between the ranks obtained from our approach and Minimax 

approach is high therefore robustness of our approach is justified. 

 

7 CONCLUSIONS 

This paper introduces a new efficiency measure with an improved discriminating power 

that can be successfully applied for AMT evaluation based on multiple exact outputs and a 

single exact input. The proposed efficiency measurement technique uses a multi-objective 

linear programming method. Both the Minimax efficiency measure by Karsak and ahiska 

(2005) and the proposed efficiency measure (Maximin appoach), being common to all DMUs, 

enable the computation of efficiency scores of all DMUs on a common weight basis. 

Using the proposed efficiency measure, a practical common weight MOLP 

methodology is developed and illustrated through a robot selection problem. The convenience 

and robustness of the proposed methodology are tested via a comparison with Minimax 

analysis, which is proposed by Karsak and Ahiska (2005). The comparison reveals that both 

analyses evaluate the same robot as the best one. Furthermore, the rankings obtained by the 

proposed methodology and Minimax analysis are shown to be positively correlated. 

The merits of the proposed framework compared with DEA-based approaches that have 

previously been used for technology selection can be listed as follows. First, this methodology 

allows the computation of the efficiency scores of all DMUs by a single formulation, i.e. all 

DMUs are evaluated by common performance attribute weights. Second, it identifies the best 

alternative by using fewer formulations compared with DEA-based approaches. Further, its 

practical formulation structure enables its results to be more easily adopted by management 

who may not poses advanced mathematical programming skills. On the other hand, one 

similarity between the proposed methodology and DEA-based approaches is that they are 

both objective decision tools since they do not demand a priori importance weights from the 

decision-maker for performance attributes.   

In short, the proposed methodology can be considered as a sound as well as practical 

alternative decision aid that can be used for justification and selection problems accounting 
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for multiple exact outputs and a single input that can be applied in a wide range of AMT’s 

selection activities. For further study, useful extensions of the proposed methodology can be 

developed, which enables the decision-maker to consider imprecise output data denoted by 

fuzzy numbers. 
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