AN EFFECTIVE CONTINUOUS-TIME FORMULATION FOR SCHEDULING OPTIMIZATION IN A SHIPBUILDING ASSEMBLY

Natalia Paola Basan

Resumo


Este trabajo de trabajo para encontrar una solución óptima de las operaciones de montaje en un sistema multi-stage de producción en un astillero. El buque de construcción de grandes dimensiones es el proceso de fabricación de fabricación de la producción y el montaje de la gran cantidad de bloques. Estos bloques se agrupan en el bloque de final final final con una orden predeterminada. Para lograr competitividad en este mercado, el desarrollo de operaciones de flujo eficiente es un potencial alternativo. Para alcanzar este objetivo, se muestra el mixto de modelo geométrico (MILP). El modelo se basa en el tiempo de tiempo de tiempo de espera de tiempo.Esta formulación de palabras matemáticas permite que las soluciones de rendimiento se adapten a los problemas académicos con el cálculo de la eficiencia del cómputo. El MILP problem fue probado y computacional se han informado de los problemas de la industria.

Palavras-chave


continuous time-slot, shipbuilding, scheduling, MILP model, shipyard block assembly system

Texto completo:

PDF (English)

Referências


BANKS. J., et al. Discrete-Event System Simulation. 4thed. New Jersey: Prentice-Hall, Inc., 2005.

BASÁN, N.P., et al. A heuristic simulation-based framework to improve the scheduling of blocks assembly and the production process in shipbuilding. Proceedings of the 2017 Winter Simulation Conference, 2007.

CEBRAL-FERNANDEZ, M., et al. Improving Planning and Resource Utilization of a Shipbuilding Process Based on Simulation. Proceedings of the European Modeling and Simulation Symposium, 2016. 197-204 p.

CHEN, N., et al. Simulation-based research on adjustment technology of ship block production plan. Proceedings of International Conference on Information Technology and Applications, 2013. 259-262 p.

CHO, K. K., et al. An integrated process planning and scheduling system for block assembly in shipbuilding. CIRP Annals - Manufacturing Technology, 47(1), 1998. 419-x80 p.

KIM, H., et al. Scheduling of Shipyard Block Assembly Process using constraint satisfaction problem. Asia Pacific Management Review, 7(1), 2002. 119-138 p.

KOH, S., et al. Spatial scheduling algorithm minimising makespan at block assembly shop in shipbuilding. 3rd International Conference on Innovative Computing Information and Control, 2008.

LEE, K., et al. Development of simulation-based production execution system in a shipyard: A case study for a panel block assembly shop. Production Planning and Control, 20(8), 2009. 750-768.

LIU, Z., et al. A Simulation Model for Spatial Scheduling of Dynamic Block Assembly in Shipbuilding. Journal of Engineering, Project, and Production Management , 1(1), 2001. 3-12 p.

PARK, K. P., et al. Application and validation of production planning simulation in shipbuilding. Ocean Engineering, 114, 2016. 154-167 p.

SEO, Y., et al. Block assembly planning in shipbuilding using case-based reasoning. Expert Systems with Applications, 32(1), 2007. 245-253 p.

SHANG, Z., et al. Spatial scheduling optimization algorithm for block assembly in shipbuilding. Mechanical Information Research Center, 21, 2013.

XIONG, F., et al. Scheduling a hybrid assembly-differentiation flowshop to minimize total flow time. European Journal of Operational Research, 240(2), 2015. 338-354 p.

ZHANG, B., et al. A new block assembly method for shipbuilding at sea. Structural Engineering and Mechanics, 54(5), 2015. 999-1016 p.

ZHUO, L., et al. Scheduling dynamic block assembly in shipbuilding through hybrid simulation and spatial optimisation. International Journal of Production Research, 50(20), 2012. 5986-6004 p.